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. The increasing intereét in the use of metal for the con-
éﬁruotion of aircraft makes timely a discussion of the problemé |
and difficulties to be met in the design of efficient compression
mewbers. No rational column formula has yet been developed

which gives results which are sufficiently precise for the dé—
sign of airplane members, and consequently it is necessary to
fall back upon experimental testing. In order to derive the max—.
imum benefit from experiments, however, it is necessary that the
experiments be guided by theory, and it is the object of this
paper to suggest a method of procedure by means of which the data
needed to modify existing formulae may be obtained with a minimum
of tests.

Although it is common in wing comstruction to find wing beams
continuous over several supports, for the sake of simplicity this
discussion will be limited to that of a simple columm supported
at both ends and subjected to uniformly distributed loads perpen-

dicular to its axis and to end loads either axially or eccentri-

cally applied.



Ideal Columns.

The failing strength of a perfectly straight homogeneous
column with pinned ends in which the compressive load is exactly
axially applied is expressed by Euler's formula:
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Where P! 1s the critical end load;
A is the cross sectional area of the column;
E is the modulus of elasticity of the material;
L ig the least ratic of length to radius of .
gyration.

————

K

It should be kept in mind that the criticai load aaloulated
from the above formula is the end load required to buckle the
strut and that for loads smaller than this the ideal column re-
mains perfectly straight. It is apparent also that the column |
will fail elastically as soon as the stress at the ends reaches
the elastic limit of the material. CGonsequently the curvé of ul-
timate streés vs. L/K for &1 Buler column has the fbrm of the
right hand curve of Fig. 1.7

If now instead of being axially applied, tﬁe end load has an
eccentricity, h, bending stresses are introduced which inérease
the strésses in the fibers of the column and decrease the magni-
tude of the load which will cause failure. In the casé of a prac-
tical strut, variations in the shape and.thickness of fhe section,
initial curvature and other imperfections have the effect of giving

an eccentricity to the end loagd.
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The equavion for the maximum intensity of stress under these
conditions is given by Morley as*

L B “
sec 3 =T ) _ (3)

A,

Where P 1is the end load applied;

A “is thecross sectional area of the columm;

h is the eccenvricity, i.e., the distance from
the point of application of the load to the ,
centroid of the section,

d 1is the depth of the section in the plane of
bending;
is the radius of o'yra.tlon in the plane of
bending.

*
This formula may be expressed (apovoximately) as follows: oy
1.2 hd
P
T g B — _ (3)

which may be simplified by substituting the Euler load, P! for
8ET
=

the expression

Thus, ft = % +-§ BT P) 0. 6 hd (4)

Failure occurs when ft reaches the elastic limit of the
material in compression, fg.

It will be noted in equation (4) that as P approaches P!
b4
the ratio ETE—jE approaches infinity.

The curves of Fig. 1, which are taken from Morley, are of in-

terest ag they show how end stress at failure is affected by vary-

. * Morley. Strength of Uaterials 1816, p.376.
F* Thid. p.376.
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ing eccentricities and varying values of L/K.

Another condition to be considered 1is the combination of the
axial loads with forcee perpendicular to the axis of the strut. -
The deflection of the strut which is produced by the lateral
loads has the sffect of making the axial load? eccentric with a
consequent increase in the maximum bending moment in the strut.
The total bending moment is the sum of an infinite series, the
first two terms of which are the bending moment due to the later-
al load, and that of the product of the axlal load by the deflec-
tion of the column under the lateral loads. For a uniformly dis-
tributed lateral load of w per unit length the exact equation
for the maximum bending moment at the center of the column, U

under the combined loading, is given by’*'

Mo = E%l (sec-g v/fg;—— 1 ) | (5)

This may be more conveniently expressed by Perry's approxi~
mate formula:

o P! (8
Mo = ¥ (57— )

where M is the maximum bending moment due to the lateral loads

alone, and the other symbols have the same significance as before.
If Z equals the section modulus the maximum fiber stress

due to bending eduals |

o _ M P!

- Z {7)

——

* Morley. p.282.
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The error introduced by this spproximation amounts to less
than 3 percent for ratios of P to P' up to 0.9,

Combining eduations (4) and (7) results in a general formula
for the maximum intensity of stress in a perfectly.straight col--
umn of homogereous material with pin ends, loaded with a uniforu-
ly distributed transverse load, which, acting alone, would pro-
duce z maximum bending moment M; and in addition, an end load,

P which is applied a distance, h from the centroid of the

section in the plane of bending.

wei ity (o) Gt 5 (®)

This formula is an approximation, but is sufficiently precisé

when the ratio of P to P' does not exceed 0.9. TFor higher val-
ues the formulae of equations (3) and (5) are recommended. TI%
should be noted here that P! in equation (8) is introduced

2 .
merely as a substitute for the eXpression TTLEI and its value

is not l;mited by the strength of the material at the elastic
limit, as iz the case when caloulating the strength of a "Euler"
strut, as has ?een explained in connection with equation (1).

Failure of the column may be expscted to occur when the total
fiber stress fy reaches the elastic limit of the material in
compression.

Latticed Columns.

The above formula, equation (8) ," has been derived for a col-

umn of homogeneous material, but may be applied to one built up
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oF longitudinal mambers or flanges which are laced together wish
lattice bars if attention is paid to the fact that the individual
flanges act independently as little columns of length equal to
.the lattice spacing. The maximum fiber stress of equation (8)
should be limited to the end stress which the flange will carry
as a pinFended column whose length equals the lattice spacing.
It is not correct to base the design of a lattice column on the
assumption that the coiumn is homogeneous and then limit the
spacing of the lattices such that the % of each flange between
the points of attachment of lattices does not exceed the -% of
the column as a whole. This procedure leavés no margin to allow
for the increase in stress in the flange due to its acting as an
independent column between lattices.

Another point to be noted is that when the column is acting
as a beam thé flanges receive their load from the lattices, and
the flange as a whole acts approximately along its centroidal
axis. In calculating the section modulus, Z, therefore, it
will be more nearl& representative of the true condition if. the
. "extreme fiber distancer, Y, 1is measured from the centroid of
the flange instead of taking one-half the depth of the columm.
This amounts practlcally to assuming that the stress is uniformly

distrlbuted over the flange section.

Appllcation of ‘Theory to Practical Columns.

Many attempts have been made to develop a rational formula

which will properly express the state of stress in & Practical
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column, but this has not yet been accomplished. Paaawell says *
in commenting on a recent paper on the subject: "Briefly, a col--
umn is an engineering structure subjected to a compressive force
~of a determinate character and to a flexure absolutely indetermi-
nate and unpredictive with any mathematical certainty. This of
course refers to columns presumably axially loaded. The intro-
duction of flexural stresses occure in a manner which can only
form a matter of conjecture."
Chew*# classifies imperfections which may reduce the strength

of an/aotual column as follows:

vl. Initial stresses in material due to manufacture.

2. Variation in strength of component parts of section.

3. Crookednesg of component parts.

4, Grookedness of whole member.

5. Local stresses due to details and shop work.

6. Accidental eccentricity.
7. Deflection caused by the foregoing imperfections.
Basgquin*** too has gone into the problem of developing a

formzla for the design of columns which will take separate ac—
count of the stresses to be anticipated in the actual column due
to crookedness, probable eccentricities, etc., but the tests on
which his work has been based were not extensive enough to warrant
the general application of his conclusions to design.

It has been found, furthermore, that a built-up column as re-

gards bending action-does not act as a perfect unit. Fig. 2 is

%«  Proc. ASCE, January, 1923.
** - Proc. Am. Soc. Civil Engrs., May, 1911,
***x Bapquin on Columns Journal W.S.C.E., 1811.
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taken from the comments of Prof. H. F. Moore, of the University
of Illinois¥, and gives the results of a series of tests conduct-
ed at the University of Illinois to determine the ratio of com-
puted to actual fiber stress in the cross section of members
built up of channels, fastened together with different types of
lacing. Quoting Prof. Moore, "Short column sections (all of the
sare length) were tested as beams with flexure in a plane paral~
lel to the plane of the lacing. Assuming integrity of action of
cross section, the extreme fiber atresses in a test beam were
calculated for various loads, and the actual fiber deformations
developed under these loads were measured by means of a strain
gauge, and the actual fiber stresses, determined from the ob-
served elongations and compressions, were indicated by the strain
gauge. In Fig. 2 is shown the variation of flexural efficiency
with computed fiber stress for various column sections. In a
column of usual length in structures (%'= 50 to 75), the com~
pressive stress is the principal stress in the column and the
flexural stress is not very high; so in comparing the flexural
efficiencies of different column sections the efficiencies under
low flexural stresses are most significant. The superiority of
the double-laced section with rivets at the crossing of the bars
is evident; the efficiency of this section at low stress proved
to be the same as the efficiency of a pair of channels tested in’
flexure in a pléne parallel t6 the plane of their webs. The low

efficiency of channels connected by means of batten plates is
* 11linois University Bulletin No. 40.
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noteworthy as is the very low efficiency of two channels connect-—
ed by non-~overlapping bars with only one rivet for eacﬁ end of a
bar. 1In each test piece approximately the same weight of lacing
material was used, .and all tests were in duplicate. Each test
wag loaded symmetrically at two points of the span, and the spans
were the same for all test pieces.”

Major Nicholson has also observed, in a series of tests on
metal girders designed for airplanes, that the deflections of
latticed girders under transverse loading exceeded those of simi-
lar girders with solid webs.*
| The weight of other authorities whose opinions are in the
same vein might be added, . but those quoted, above should be suffi-
cient to indicate the difficulties to be egcountered in attempt-
iﬁg to calculate the distribution of stress in compression mem-
bers. In ordinary structural design these difficulties are some-
times circumvented by the device of limiting the calceulated max-
imum intensity of stress due to the combination of end and side
loads to the allowable end stress on the strut as a simple pin-
ended column. This procedure is illustrated in the design of a
lérge derrick boox which has been worked out in detail by M. C.
Bland in a paper entitled "Investigation of Stresses in Derricks.
" This procedure 1s conservative, and while it probably gives re-
sults which are quite satisfactory for structural work where a
slight_excess in the weight of a member is not a serious matter,

it ig not sufficiently precise for general use in the design of

ik 1

* The Development of Metal Construction in "Alrcraft Engineer~
ing," London, March 13, 1920.
** Trans. ASCE, 1920.
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airplane girders, particularly when the end load is relatively
emall compared with the transverse load. As the magnitude of the
end load approaches zero, the column becomes & siyple beam, but
according to the above method the criterion for the maximum in-
tensity of fiber stress is still the limiting stress on the mem—
ber as a pin-ended column.

We are thus forced to the conclusion that for the design of
compression members the theoretical formulae must be reinforced
and modified by experiments on the particular type of column
which is to be used. The most hopeful procedure is to select a
formula such as eQuation (8) and by a series of careful experi-
ments on full-size columns, determine the factors which must be
introduced inta this formﬁla to make it fit the actual members.
Referring %o equation (8), it will be noted that there are two
quantities, P! and h, to which modifying factors could be
applied. l

As has been stated previously, P' in this formula is mere-
1y a shorthand expression of the guantity jﬁ%%l. _Now tﬁe only
quantity in this expression’ to be detérmined experimentally is
the E, which represents the modulus of elasticity of tpe built—
up ‘member, This can be easily found by measuring the deflection
of the column when loaded as.a simple beam by a transverse load
conceritrated at the center, and solving for E 1in the well—known

3 .
deflection formula S = £§ %%~. The procedure may be %mproyed,

however, by retaining "B as the modulus of elasticity of the
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material of which the column is built and intrcduscing a coeffi-

cient © into the formula: tmus § = -+ JL> |
' 18 CET

upon ags the "form factor" for the seation, and revresents ths

C may be loocked

ratic of the stiffness of the actual column to that of a solid
theoretical column of the same material. This coefficient could
. then be applied to the calculation of P!, but it will be pref-
erable to introduce ¢ into edquation (8) and use the modulus of
elasticity of the material in calculating Pt.

The term h, may be congidered as being the sum of the known
eccentricity of the application of the load to ends of the col-
umn H, and an equivalent eccentricity which repreéents the over—
all vconstructional® eccentricity of the actual column, that is,
the sum of the imperfections of the actual strut and is designat-
ed by e. To find e, it is necessary to build and test as pin-
ended struts with axial loads, a number of full-sized columns of
varying lengths of the type to be used. These test specimens
should of course be built as far as possible to the same Quality
of workmanship and straightness as will be followed in the con-
struction of the columns or beams to be used in the airplane it-
self. A column formula may be plotted from the results of these
tests and e calculated from the relation

o.IG{Eed:: (I.OEA_: _1> (CP'C;.POS (9)

Where fgo = the compressive elastic limit of the mater-
~ ial for homogeneous struts and for latticed
' struts the limiting unit end stress on an
individual flange of a length eQual to the
lattice spacing,
* From Morley, p.376.
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P
. if = the observad ultimate end stress as a pin-
ended column.
Pt = critical end load calculated from Euler's
_ formula.
¢ = the form factor coefficient mentioned above

(This factor does not appear in the formula.
as given by Morley.)

®ith latticed éolumns additional tests must be made of the
strength of the individual flanées as pin-ended columns to deter-
mine the proper value of £, to be used in the above formula.

The above equation (9) appears somewhat formidable, but it
will be found from experiment in most cases that the eccentricity
e, ocan be sufficiently expressed as a simple function of the
length?gf the - L/K of the column.

Introducing the above modifications, equation (8) may be re-

written as

=t i Eror) O @)

-~

Forces in the Braoing of Latticed Columns.

- The forces which act upon.lattice bars have been divided by
Basduin into three classes:* "First, those introduced in the fabri-
cation of the column;; second, thoge due to transverse shear caus-
ed by local beﬁds in the column; and third, those due to trans—
verse éhear caused by general inclination of the column." The
latter two conditions have been investigated in a series of care-

ful extensometer tests by Talbot and MooTe . ** In case of a

column built of two channels latticed together with flat bars and

%+ Journal W.S.C.E., 19813, p.493.

xx 0An Investigation of Built-Up Cclumng Under Load," Universit
An Investigation, of BUl il o8 Chune Toth, Y
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with an average end stress of 10,000 pounds per sduare inch,
they conclude that: "It is evident from the tests that the rel-
ative stress in the two-channel members varies considerably from
end to end and that the stress in the lattice bars also varies.
It seems probaple that the transverge shear developed may be
traced largely to irregularities in outline, or at least that
these irregularities may be expected to cover up other causes of
stiess in the lacing of centrally-loaded colummns, if we include
in such irregularities all unknown eccentricity. The futility
of attempfing to determine analytically the stresses in column
lacing, using as a basié either a bending moment curve which var-
ies from end to middle or an assumed deflection curve, is appar-
ent from a study of the variation of sfress in the columns of the
tests and in that of the lattice bars.V

It is neocessary, nevertheless, to find some means of approxi-
mating the loads in the lattice members., The method most favored
in the dgsign of structural columns is to assume that the column
is loaded with a uniformly distributed transverse load w, where
w 1is the transverse load, which, considefing the column as a sim- _
ple beam, will‘produce a maximum fiber stress equal to the diffex-
ence between the elastic limit of the material and the end unit
stress allowed by the column formula. The verfioal component of
the load in the lattices at the ends of the column eduals %% >
which is assumed to be equally distributed between the lattices

cut by a vertical plane normal to the axis of the girder.*
* gpofford - "The Theory of Structures," 1915, p. 303.
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Alexander* has investigated the distribution of the shearing

stresses in an ideal column, using eduations which involve the
true elastic curve of flexure of the column. His expression fox

the maximum shear may be put into the form
2
=4 f - 2L 11
] L (Q . ( )

the shear at end of cdlumn;

= gection modulus;

o= limiting stress on short column;
P'= Euler ,crippling load.

Where R
Z

The constant T in the above equation is increased to 5 for
actual struts to allow for longitudinal irregularities and slight
impeifections in fitting and securing the lattice bars.

It may be noted that the assumption that the shear may be
determined on the basis of the uniformly distributed lateral load
mentioned above amounts to assuming a parabolic curve for the de-
‘Tlection of the column. This latter approximation gives a value

R#% (fc—-§>

of

which exoeeds the shear calculated by the more exact method but

is less than that récommended by Alexander for practical columns.

Until this subject has been more thoroughly investigated by exper-

iment, it is recommende& that the shear in lattice bars be calcu-

lated by Alexander's formula,

R___ (f __12'_ : (13) .

* Wm. Alexander, *Colunns and Struts," 12123, Chavn. X.
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In view also of the approximate nature of this method, and the
variations in shear due to locel irregularities, etc., no attenpt
should be made t0' vary the strength of the latticing along the
length of the column. Alexander points out that "the points
where the deflection is a maximum and the shearing forces nil,
are unknown and certain to be different in each strut,v and con-
¢ludes."each case must be considered on its own merits. No gen-
eral formula can be given for even the proﬁable limits of reduc-
tion in shearing stresses.®

It will be noted that the expression ( fo - %f—) in equa-

tion (12) would equal the fiber stress in an ideal strut due to

flexure. To gpply this formula to a practical strut, substitute
1

for %r the fiber stress permitted hy the experimental formula.
The resulting shear in the lattices will be 30 per cent in excéés
of that determined by the procedure given by Spofford. .

To find the shear in the lattice bars of a strut under comi-
bined end and transverse loads, let the sum of the second and

third terms of equation (10) equal Iy

= 52
Then R =2 (fy) (13)

—-

This use of this formula is recommended.

Illustrative Problemn.

To illustrate the application of this method of analysis an
example_will be worked ocut. The column chosen is of suitable

proportions fo be used as a portion of the wing beam of a large
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airplane. its strength about the horizontal axis only will be in-

vestigated., Fig. 3 is a sketch of the column. It will be noted

that the latticing on the top and bottom faces is entirely inside

the flanges. While not the best design from a structural stané-

point, it is desirable to facilitate sliding the wing ribs along

the beam in the assembly of the wing panel.

the total end load including the factor of safety =

30,000 lbs.

M = maximum bending moment due to the uniformly dis-
tributed transverse loads = 81,800 inch pounds,

= length of beam between points of inflexion = 144

inches, .
= area of flanges = 0.88 square inches.

Let P

moment of inertia = 6.9 {inches)*

L T e B = R
i

= radius of gyration of section about axis XX = 2.8
inches.
L/X = 144/2.8 = 51,

y = distance from centroid of section to centroid of
flange = 2.8 inches,
Z = Section medulus = I/y = 2,468 inches cubed.

fo= crippling end stress on one angle of flanges as a
pin-ended column whose length equals the pitch of
the lattices = 105,000 lbs. per sq. in.

T2EI
§ =
P s

Po= failing load as a pin-ended column.

In the absence of experimental data on columns of this type,
curve A-oftvFi .
curve A of Fig., 4 has been more or less arbitrarily ¢hosen to rep-
resent the relation between L/X and the failing end stress.

C - the form factor coefficient has been assiumed equal

to 0.8.
Then §Q—=f 58,000 1lbs. per sq. in. from Fig. 4.
' 2
sy Opt o 08T (30,000,000) (0.88 x 3.82) _ .79 g0,

(144)=
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Find the ncomstructional eccentricity" of the column e fion

equation (9).

0.6 e(d) _ 105000 _ 1) (79000 - 58000 (.88)\ = 0.29
(x)* _ \ 88000 79000 _

and e = 0.608" which is - of the length of the column.

2330
s . 0.8 ed
substituting the above value of %

the maximum fiber stress in the flanges at a point'of attachment

into equation (10)

of the lattice edQuals

fti%‘_‘% (CP'-P) <068d> _% (CP’CE‘P/-—_:

72000 (0. 39) L 73800 (79000 \ -

34100 .+ 34100 (49000 2. 46 49000

= 103400 lbs. per sd.in,

-~

since f4 is less than 105000 1lbs. per s4.in., the area
provided in the flanges is sufficient.

Load in Iattice Members.

By-‘equation (13) the shear at the end of the column equals
5Z

R = I (fb).
There £y equals the maximum flexual fiber sgtress as ex-

pressed by the second and third terms of equation (38).

R = —ﬁf—) 69300 = 5930 1bs.

-~

Assuming the above shear distributed equally between the four

lattices cut by a plane perpendicular to the longitudinal axis of
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the column, the total load in each lattice equals

5920 ; 735 _ 1905 1bs.
4 5.83

-

Strength of Individual Lattices.

Assume that the lattice in compression is supported at the
center by the adjacent lattice which is in tension and that the
lattice fails as a pin-ended column whose length 1s equal to one-
half +the length of the lattice between centers of flange rivets.

ATea of section = 0.0335 sq.in.

Least radius of gyrations = 0.075 in.

= x2sd
L/K = =522 = 45.

-

—~

‘In the absence of test data on lattices as used in this de-
sigt a column formula somewhat more conservatlve fhan Rankin's
has been arbitrarily chosen. Using stegl having an elastic limit
of 100,000 1bs. per sq.in., the allowable P/A for an L/K of 45
equals 60,000 1lbs. per sd.in.

The strength of the lattice = 60,000 x 0.6325 = 1950 1bs.,
which exceeds the required streﬁg%h of 1905 1lbs. The lattice de-

sign is therefore satisfactory.
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